
   
 

© The Author(s) 2011. This article is published with open access at Springerlink.com csb.scichina.com   www.springer.com/scp 

                      
*Corresponding author (email: liuyu@loess.llqg.ac.cn) 

Article 

SPECIAL TOPICS:  

SPECIAL TOPIC October 2011  Vol.56  No.28-29: 29862994 

Climate Change over the Past Millennium in China doi: 10.1007/s11434-011-4713-7 

Amplitudes, rates, periodicities and causes of temperature variations 
in the past 2485 years and future trends over the central-eastern  
Tibetan Plateau 

LIU Yu1,2*, CAI QiuFang1, SONG HuiMing1,3, AN ZhiSheng1 & Hans W. LINDERHOLM4 

1 The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075,  
China; 

2 Department of Environmental Science and Technology, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 
710049, China; 

3 Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 
4 Regional Climate Group, Department of Earth Sciences, University of Gothenburg, SE-40530 Gothenburg, Sweden 

Received March 8, 2011; accepted July 14, 2011 

 

Amplitudes, rates, periodicities, causes and future trends of temperature variations based on tree rings for the past 2485 years on 
the central-eastern Tibetan Plateau were analyzed. The results showed that extreme climatic events on the Plateau, such as the 
Medieval Warm Period, Little Ice Age and 20th Century Warming appeared synchronously with those in other places worldwide. 
The largest amplitude and rate of temperature change occurred during the Eastern Jin Event (343–425 AD), and not in the late 
20th century. There were significant cycles of 1324 a, 800 a, 199 a, 110 a and 2–3 a in the 2485-year temperature series. The 1324 
a, 800 a, 199 a and 110 a cycles are associated with solar activity, which greatly affects the Earth surface temperature. The 
long-term trends (>1000 a) of temperature were controlled by the millennium-scale cycle, and amplitudes were dominated by 
multi-century cycles. Moreover, cold intervals corresponded to sunspot minimums. The prediction indicated that the temperature 
will decrease in the future until to 2068 AD and then increase again. 
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Within the research field of global change, there is currently 
great interest in long-term temperature variation character-
istics, such as the amplitude, rate of change, periodicity, and 
cause of past and future trends of temperature, at global and 
regional scales. Many aspects of the climate over the past 
2000 years remain unclear; e.g. the temperature amplitude 
changes from a cold phase to warm phase, the warming rate 
during warm periods, variation periodicities, causes of vari-
ations, and whether the 20th century was the warmest in the 
past 1000 or 2000 years. 

The Earth’s climate is complex and sensitive to solar ac-
tivity [1,2]. Solar activity has millennium and multi-century 

(200 a and 100 a) variation cycles [1,2]. Among them, mil-
lennium-scale cycles are important and have been identified 
in numerous geological records since the Holocene [3], and 
can even be traced back 400 ka [4]. Since the millennium- 
scale cycle is one of the dominant cycles of climate change 
and has persisted for such a long time, there is no known 
reason why it should be interrupted in our time.  

To better understand climate change as a natural process 
in the past 2000 years, the proxy used should not only have 
high (annual) resolution but also contain two complete 
long-term cycles [5]. Unfortunately, there are few tempera-
ture series meeting these two conditions. The millennial 
cycle has not been recognized widely so far in climate re-
search on the last 2000 years, mainly because the lengths of 
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temperature series are limited. This reduces the accuracy in 
predicting future climate trends. 

Records used in studying climate during the past 2000 
years are ice cores [6], corals [7], speleothems [8,9], lacus-
trine deposits [10], historical documents [11,12] and tree 
rings [13]. Tree rings play an important role in the study of 
climate change, especially for the climate of the past 2000 
years, because of their precise dating, high resolution and 
continuous recording. They serve as major data sources for 
reconstructing regional, hemispherical and global tempera-
tures during the past 1000 to 2000 years [14]. 

Although tree-ring records are widely available, tree- 
ring-based reconstructions are mostly shorter than 1000 
years, with few reaching 2000 years, which greatly limits 
the recognizing of characteristics of climate change on the 
millennial scale. A temperature series for the past 2485 
years for the central-eastern Tibetan Plateau [13] provide a 
unique opportunity to study climate variation on the millen-
nium scale. In this paper, climate characteristics such as 
amplitudes, rates, and periodicities are discussed on the ba-
sis of the 2485-year temperature series, and the possible 
mechanism of temperature variation is explored preliminar-
ily. Finally, future variation trends are predicted. 

1  Materials and methods 

The 2485-year temperature data used in this study are taken 
from reference [13]. This temperature series is not only 
representative of the central-eastern Tibetan Plateau, but 
also the vast area of central-northern China. It is also sig-
nificantly correlated with seven other temperature series of 
the Northern Hemisphere [13]. It even has a teleconnection 
with series for middle-low latitudes in the Southern Hemi-
sphere [15]. Therefore, the spatial representative of this 
temperature series is quite clear. Since a conservative nega-
tive exponential or linear regression is employed in the 
detrending process, most low-frequency signals are pre-
served in the chronology and can be used to detect the 
low-frequency components of climate change.  

The methods employed in this paper are as follows. (1) 
Cold and warm periods are defined as those for which the 
temperature is respectively half a standard deviation below 
and above the mean temperature for the 2485 years. (2) The 
amplitude is defined as the difference in the mean tempera-
ture between two adjacent cold and warm periods. (3) The 
rate is defined as the slope of a trend line for a certain peri-
od of increasing or decreasing temperature. (4) Redfit35 
software was employed to detect periodicities of the 2485- 
year temperature series. The parameters set for this analysis 
were n50 = 4 (WOSA segment: Welch Overlap Segment 
Averaging procedure) and iwin = 2 (a Hanning smoothing 
window was selected). Other parameters were default set-
tings [16]. (5) The Caterpillar-SSA [17] method was em-
ployed to predict future temperature trends for the next 120 

years on the Tibetan Plateau; for details, see reference [18]. 
There are four steps to the analysis: embedding, singu-
lar-value decomposition, grouping and diagonal averaging. 
The sole and important parameter of the embedding step is 
the maximum time lag L, also referred to as the window 
length. In this paper, we choose 1700 years as the window 
length (L) for the temperature series because it relates 
closely to the 1324-year cycle. The Caterpillar-SSA method 
can identify fluctuations with cycles at L/15–L. We em-
ployed the Ward method and Euclidean distance in cluster 
analysis. The process was spread using a tree diagram. A 
recurrent method was applied for prediction.  

2  Results and discussions 

2.1  Amplitudes, variabilities and rates of change in the 
2485-year temperature series 

(1) Amplitude of temperature variation. This paper mainly 
deals with the characteristics of temperature variations on 
millennial to centurial scales, and the interannual and deca-
dal scales of temperature change are neglected. Thus, the 
mean temperature and standard deviation were calculated 
for the entire 2485-year temperature series.  

Calculation results show that the mean annual tempera-
ture for the period from 484 BC to 2000 AD on the cen-
tral-eastern Tibetan Plateau was 2.12C and the standard 
deviation was 0.40C. Therefore, six cold and six warm 
periods were identified in the whole series (Table 1). This 
result is more accurate and quantitative than that in [13].  

During the past 2485 years, the temperature amplitude 
was a maximum during the East Jin Event (EJE) [13]. The 
EJE had two stages, with the temperature decreasing in the 
first (C2) and then increasing in the later (W2). The mean 
temperature suddenly increased from 1.66C (C2) to 2.67C 
(W2, Table 1), while the temperature amplitude reached 
1.01C within 30 years. The mean temperature during C2 
was even lower than that of the Little Ice Age (LIA). The 
coldest years in C2 (with a mean temperature of 1.38C) 
were 362–369 AD and the temperature was about 1.5C 
lower than the mean temperature for the late 20th century. 
The coldest event captured in the tree-ring record was also 
described in historical documents: “It had been extremely 
cold for three years starting from 366 AD, while the sea 
water was totally frozen from Changli to Yingkou along the 
Bohai gulf. Thousands of military soldiers and gharries 
could come and go across the Bohai gulf on the ice” [19]. 

The 2485-year temperature curve, along with others for 
the Northern Hemisphere [20–22], exhibited a gradually 
increasing trend since the LIA. The amplitude of tempera-
ture change from C6 to W6 was 0.79C. If we only focus on 
the 20th century, the amplitude from 1911–1920 AD to 
1991–2000 AD was also 0.79C. These two values are very 
close to the increase in the Earth surface temperature 
(0.74C) during the last 100 years, evaluated by IPCC4 [23],  
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Table 1  Amplitudes and rates during cold and warm intervals on the central-eastern Tibetan Plateau for the past 2485 years a) 

Cold (C)/Warm (W) period Interval Mean temperature (°C) Amplitude (°C) Rate (°C/10 a) 

C1 437– 412 1.64 
W1–C1=0.71  

C2–W1=0.70  

W2–C2=1.01  

C3–W2=0.84  

W3–C3=0.61  

C4–W3=0.72 

W4–C4=0.78  

C5–W5=0.67 

W6–C6=0.79  

0.03 

0.003 

0.77 

0.17 

0.04 

0.08 

0.05 

0.01 

0.02 

W1 266– 235 2.35 

C2 343–367 1.66 

W2 388–425 2.67 

C3 460–485 1.83 

W3 585–640 2.44 

C4 682–714 1.72 

W4 784–900 2.5 

W5  942–1014 2.5 

C5 1268–1306 1.83 

C6 1595–1713 1.78 

W6 1960–2000 2.57 

 1911–1920 2.07   

 1990–2000 2.86 0.79  

a) Positive values: from a cold period to warm period; negative values: from a warm period to cold period. 
 
 

indicating that the increasing rate of temperature on the Ti-
betan Plateau has been stable since the 17th century, and the 
temperature has increased synchronously with the global 
temperature. The amplitude on the plateau in the 20th cen-
tury was slightly higher (0.05C) than that on a global scale. 
However, the amplitude of temperature in the 20th century 
(0.79C) was much lower than that of the EJE (1.01C) on 
the Plateau.  

There were two warm periods, W4 and W5, during 784– 
1014 AD, most likely corresponding to Zhu’s result [19] 
that there was a warming interval during 600–1000 AD in 
the Sui and Tang dynasties. It seemed that the duration of 
the Medieval Warm Period (MWP) was earlier in China 
than in the Western Hemisphere [24]. However, at almost 
the same time as a warm period during 900–1000 AD ob-
served in the GISP2 δ18O records of an Greenland ice core 
[25], W5 occurred on the Tibetan Plateau. This suggested 
that the MWP existed worldwide or at least synchronously 
at the high elevations of western China and high latitudes of 
the Northern Hemisphere. It should also be noted that the 
longest cold period was 1595–1713 AD, which was ho-
mochronous with the worldwide LIA maximum [26]. 

The mean temperature of the late EJE (2.67C) was the 
highest in the 2485 years, even exceeding that of the second 
half of the 20th century (2.57C). In other words, the late 
20th century was not the warmest period in history. The 
δ18O record of Jinchuan peat revealed that the degree of 
warming around 420 AD was not inferior to that of other 
warm periods in the past 6000 years [27], and this warm 
event coincided almost exactly with the highest peak around 
413 AD in the 2485 years for the Tibet Plateau. This is fur-
ther evidence of the EJE existing over the large scale of 
China. 

(2) Temperature variability. We defined temperature 

variability as the standard deviation of the 40-year moving 
average. Figure 1 shows that the temperature variability was 
greater in warm periods, such as W2 and W6. In fact, the 
mean temperature gradually increased for 600 years after 
the EJE, and accordingly, the variability obviously in-
creased. On the contrary, in cold periods, such as 682–714 
AD and 1595–1713 AD, the temperature variability was 
comparatively low and the amplitude of temperature change 
was small. It is thus concluded that the temperature varia-
bility was comparatively large with strong fluctuation of the 
interannual temperature in warm intervals and small with 
weak fluctuations in cold intervals. 

(3) Rate of temperature variation. We calculated rates of 
temperature variation in 10-year intervals and found that the 
rate of temperature variation was highest in 362–390 AD 
(C2–W2) with a value 0.77C/10 a. The next highest rate 
(0.35C/10 a) was for the period 881–908 AD between W4 
and W5. There were low rates of variation in two long-term 
intervals: 0C/10 a in 228 BC–362 AD and 0.01C/10 a in 
1271–1545 AD. There was an apparent warming trend in 
the 20th century on the Plateau, with a rate of 0.11C/10 a 
during 1918–2000 AD; this is similar to what IPCC4 re-
ported (0.13C/10 a) for the past 50 years [23]. These two 
values are higher than the global average rate (0.044C/10 a) 
during 1850–2008 AD [28]. In general, the calculations 
showed that the warming rate in the 20th century was not 
the highest in the past 2485 years. 

2.2  Periodicity of temperature variation 

Power spectrum analysis reveals that the major periodicities 
were concentrated on 1324 a, 800 a, 199 a, 110 a and 2–3 a 
at the 99% confidence level and 66 a and 38 a at the 95% 
level in the 2485-year temperature series (Figure 2). The  
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Figure 1  Tree-ring-based temperature reconstruction for the central-eastern Tibetan Plateau during the past 2485 years (gray line), the 40-year moving 
average (thick black line) and the 40-year running standard deviation (thin black line); the horizontal line is the mean temperature for the 2485 years. 

 

Figure 2  Power spectrum analysis of the 2485-year temperature series. 

2–3 a cycles existed widely [29–34] and were attributed to 
quasi-biennial oscillation (QBO). The QBO is speculated to 
be an important characteristic of atmospheric circulation 
and climate change [35]. The 38 a cycle is close to the 
Bruckner cycle [36], and the 66 a cycle is regarded as a 
global-climate-system cycle [37]. Whether the 800 a cycle 
can be attributed to the 1000 a cycle is currently unclear. In 
this paper, we only focus on the cycles of 1324 a, 199 a and 
110 a.  

(1) Millennium-scale cycle. The 1324 a cycle is notable 

in Figure 2 and approximates the well-known dominant 
climate-change cycles 1374±502 a in the Holocene [3] and 
the 1470 a cycle in Dansgaard/Oeschger (D-O) events in the 
last glacial period. All these cycles are referred to as mil-
lennium-scale cycles. The 2485-year temperature series can 
be divided into four stages: in stage I (250 BC–369 AD), the 
temperature gradually decreased for about 600 years; in 
stage II (370–999 AD), the temperature gradually increased 
for nearly 600 years; in stage III (1000–1600 AD), the tem-
perature decreased for 600 years; and in stage IV 
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(1601–2000 AD), the temperature has increased step by step 
for about 400 years until the present. The entire series from 
stage I to IV looks like a sawtooth wave (Figure 3). Stage I 
and II are a complete millennium-scale cycle, and stage I to 
III are one-and-a-half millennium-scale cycles. 

The global climatic system is greatly affected by the 
millennium-scale cycles. There has been much geological 
evidence of millennium-scale cycles, from North America 
to Europe and from the Middle East to East Asia. A 1500 a 
cycle was found in deep-sea sediment records for the North 
Atlantic [3], lake sediment records for Alaska [1], pollen 
records for the Ptolemais basin, Greece [38], loess records 
for Jiuzhoutai, China [39] and sea surface temperature rec-
ords for the North Pacific at mid-latitudes [40]. 1450 and 
1150 a cycles were detected for the 74K1 hole in the Ara-
bian Sea [41]. There was a 1200 a cycle in Eurasian climate 
history [42]. In China, a 1463 a cycle was found in Zoige 
peat records [43], a 1140 a cycle in sediment records of lake 
Huguang Maar since the Holocence [44], and 1087–1220 a 
cycles in a temperature series for Hongyuan [27].  

There is evidence worldwide indicating that millenni-
um-scale cycles are the dominant factors for climatic fluc-
tuation during the Holocene, and the exact periodicity of the 
millennium-scale cycle was modified as 1374 ± 502 a by 
Bond et al. [3]. The inducement mechanism of these cycles 
may be associated with solar activity [3,42,45], and perhaps, 
the inherent solar cycle [2,46]. 

This moderate millennium-scale cycle has lasted for such 
a long time that there is no reason for it to disappear in the 
last 2000 years. However, it has been mentioned rarely in 
the study of the climate in the last 2000 years; a possible 
reason is that reported temperature series have not been 
long enough. 

There are alternating cold and warm intervals in the 
2485-year temperature curve: 600-year increases and 
600-year decreases. This regularity of climate change is 
expected to continue. There were turning points from a cold 
interval to a warm interval at 343–367 AD (the EJE) and 
1595–1713 AD (the LIA). Likewise, the MWP is the turn-
ing point from a warm to cold phase under the control of the 
millennium-scale cycle. 

(2) Multi-century-scale cycles. The significant multi- 
century-scale cycles were 199 a and 110 a in the 2485-year 
temperature series for the central-eastern Tibetan Plateau. 

They are close to the quasi-200 a (Suess cycle or de Vries 
cycle) [45] and quasi-70 a–100 a cycle (Gleissberg cycle) 

[46,47] of solar activity, respectively, which have been 
found in extensive geological records [34,48–59]. Quasi- 
200 a and quasi-100 a cycles are extremely notable in re-
search on the global temperature in the last millennium. 

Multi-century cycles related to solar activity strongly af-
fect the Earth’s climate system. They have left footprints in 
various geobiological carriers. Thus, it is not surprising to 
detect these two century-scale cycles in the Tibetan temper-
ature curve.  

2.3  Causes of warm periods 

It has been reported that global warming in the late 20th 
century has resulted from the constructive overlapping of 
multiple cycles (21 a, 64 a and 179 a) commonly in uplift 
phases [60]. However, in our opinion, in addition to the 
cycles above, millennium-scale cycles have also made a 
great contribution to the warming, as well as to other 
warming periods historically. 

Among the significant cycles in the 2485-year tempera-
ture series, two century-scale cycles (199 a and 110 a) have 
dominantly affected the amplitude of the temperature varia-
tions. The 110 a cycle (with largest amplitude A = 1.875C) 
contributed more than the 199 a cycle (with largest ampli-
tude A = 1.399C) to the amplitude of temperature varia-
tions. 

If the two century-scale cycles are in ascending phases 
while the millennium-scale cycle is near its peak, then the 
constructive overlapping of these three cycles could pro-
duce a warm period. If we take the warm periods from W1 
to W6 as examples (Figure 4), they all corresponded to the 
constructive overlapping of 1324 a, 199 a and 110 a cycles. 
There were extremely cold periods when the 119 a and 110 
a cycles were in their declining stages and the 1324 a cycle 
was near its minimum; e.g. the EJE and LIA. 

The millennium-scale cycle regulated the century-scale 
cycles and controlled the long-term trend of temperature 
change, although its maximum amplitude A was only 
0.848C. If the millennial cycle was in a declining phase, 
there was no warm period irrespective of how strongly the 
century cycles uplifted; e.g. stage I (250 BC–369 AD) and 
stage III (1000–1600 AD) (Figure 3). On the other hand, in  

 

 

Figure 3  Millennium-scale cycle in the temperature variation during the last 2485 years.  
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Figure 4  Decomposition of the main cycles of the 2485-year temperature series on the Tibetan Plateau and periodic function simulation. Top: Gray line, 
original series; red line, 1324 a cycle; green line, 199 a cycle; blue line, 110 a cycle. Bottom: Three sine functions for different timescales. 1324 a, red dashed 
line (y = 0.848 sin(0.005 t + 0.23)); 199 a, green line (y = 1.40 sin(0.032 t – 0.369)); 110 a, blue line (y = 1.875 sin(0.057 t + 2.846)); time t is the year from 
484 BC to 2000 AD. 

stage II (370–999 AD) and stage IV (1601–2000 AD), when 
the millennial cycle was in a rising phase, the warm trend 
was still increasing no matter that the century-scale cycles 
were declining during some intervals. 

Figure 4 (bottom) shows the simulation results using 
three sine functions for the period 484 BC–2000 AD. Three 
sine functions have periods of 1324 a, 199 a and 110 a. 
Again, it was observed that if the two century-scale cycles 
were in ascending phases while the millennium-scale cycle 
was near its peak, the constructive overlapping of these 
three cycles produced a warm period (Figure 4, bottom, red 
arrows). Other warm and cold intervals were also simulated 
using the three functions. 

It is interesting to note that sunspot minimums corre-
spond to the cold periods in the 2485-year temperature se-
ries well. For example, the cold period of 1015–1040 AD 
corresponds to the Oort minimum (Om, 1010–1080 AD), 
the cold period of 1258–1309 AD (C5) to the Wolf mini-
mum (Wm, 1270–1350 AD), the cold period of 1451–1539 
AD to the Spörer minimum (Sm, 1430–1520 AD), the cold 
period of 1620–1715 AD (C6) to the Maunder minimum 
(Mm, 1620–1710 AD) and the cold period of 1766–1824 
AD to the Dalton minimum (Dm, 1787–1843 AD) [61] 
(Figure 4, top). 

A previous study [13] stated that the low-frequency 

component of the 2485-year temperature curve was quite 
similar to that of the solar radiation curve. Further study in 
this paper revealed that the solar activity was a major driv-
ing factor of the climate variations on the central-eastern 
Tibetan Plateau, or in an even larger region. The millennial 
cycle of solar activity determined the long-term trends 
(>1000 a) of temperature variations; meanwhile, the centu-
rial cycles determined the amplitude of the temperature 
variations. It is also worth noting that almost all sunspot 
minimums corresponded to low-temperature intervals. 
However, the interannual- to decadal-scale temperature 
changes might be related to atmospheric circulations. This 
followed a comment made by Zhu [19]: “The large changes 
of the Earth’s climate have been controlled by solar radia-
tion, but the small changes by atmospheric circulations”. 

2.4  Prediction of temperature trends in the next 120 
years 

We believe that the periodic oscillations are natural process 
in the climate system, which have existed for thousands of 
years, and will continue in the coming hundreds of years. 
This is a theoretical base for climate prediction. Caterpil-
lar-SSA is a novel and powerful method for time series 
analysis and forecasting. It has been successfully applied to   
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Figure 5  Prediction of temperature trends on the central-eastern Tibetan Plateau for the next 120 years. Blue line, initial series; orange line, calibration 
series, 464 BC–834 AD; purple line, verification series, 835–1980 AD; red line, forecasting series, 1980–2134 AD. 

forecast the trends of precipitation variation in the Helan 
Mountains [18]. The prediction results have been partly ver-
ified with meteorological observations during the period 
without tree-ring data (1998–2009). The specific method 
has been detailed in reference [18]. 

The series of the 40 a moving average was used as the 
initial series, covering 2445 years (464 BC–1980 AD). The 
calibration period was from 464 BC to 834 AD, the verifi-
cation period was from 835 AD to 1980 AD, the forecasting 
period was from 1981 AD to 2134 AD, and verification 
during the observation period was from 1957 AD to 2006 
AD (Figure 5). The observation data were average values 
for seven stations (Delingha, Dulan, Golmud, Lhasa, Nagqu, 
Dachaidan, and Bange) on the central-eastern Tibetan Plat-
eau. Forecasting theory suggests that it is reliable to forecast 
for a period that is 10% of the initial series [17]. In this pa-
per, the verification series was nearly 1200 years. It is thus 
feasible to forecast the temperature for the next 120 years. 
A recurrent method was employed and the mean- square 
error was made a minimum; in this work, the minimum 
mean-square error was 0.74. 

The prediction results show that the temperature contin-
ues to increase until 2006 AD and then decreases to a min-
imum around 2068 AD. After 2068 AD, the temperature 
increases again until 2088 AD. This forecasting result dif-
fers from that of Qian et al. [60], who believed that the 
temperature would decrease until 2035 AD and then in-
crease again until 2068 AD. 

The forecasted temperature series captured the trends of 
the observed data quite well (Figure 6), suggesting the reli-
ability of the prediction. 

3  Conclusions 

This paper dealt with the amplitudes, rates, periodicities and 
causes of temperature variations on the basis of tree rings on 
the central-eastern Tibetan Plateau, and tentatively forecast 
the temperature trends for the next 120 years. 

Climate events worldwide, such as the MWP and LIA, 
were seen in a 2485-year temperature series. The largest  

 
Figure 6  Temperature comparison between the forecast and observation 
data taken from seven stations on the central-eastern Tibetan Plateau (seven 
stations: Delingha, Dulan, Golmud, Lhasa, Nagqu, Dachaidan and Bange). 

amplitude and rate of temperature both occurred during the 
EJE, but not in the late 20th century. The millennium-scale 
cycle of solar activity determined the long-term temperature 
variation trends, while century-scale cycles controlled the 
amplitudes of temperature. Sunspot minimum events were 
associated with cold periods. 

The prediction results obtained using caterpillar-SSA 
showed that the temperature would increase until 2006 AD 
on the central-eastern Plateau, and then decrease until 2068 
AD, and then increase again. 

The regularity of 600-year temperature increases and 
600-year decreases (Figure 3) suggest that the temperature 
will continue to increase for another 200 years, since it has 
only been about 400 years since the LIA. However, a de-
crease in temperature for a short period controlled by cen-
tury-scale cycles cannot be excluded. 

Obviously, solar activity has greatly affected temperature 
on the central-eastern Plateau. However, there are still un-
certainties in our understanding of climate change, and the 
concentration of CO2 affects the climate. Further investiga-
tions are thus needed. 
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