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Abstract

River streamflows are excellent climatic indicators since they integrate precipita-

tion over large areas. Here we follow up on our previous study of the influence of
solar activity on the flow of the Paraná River, in South America. We find that the
unusual minimum of solar activity in recent years have a correlation on very low
levels in the Paraná’s flow, and we report historical evidence of low water levels
during the Little Ice Age. We also study data for the streamflow of three other
rivers (Colorado, San Juan and Atuel), and snow levels in the Andes. We obtained
that, after eliminating the secular trends and smoothing out the solar cycle, there
is a strong positive correlation between the residuals of both the Sunspot Number
and the streamflows, as we obtained for the Paraná. Both results put together imply
that higher solar activity corresponds to larger precipitation, both in summer and
in wintertime, not only in the large basin of the Paraná, but also in the Andean
region north of the limit with Patagonia.
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1 Introduction1

Usually, studies focusing on the influence of solar activity on climate have con-2

centrated on Northern Hemisphere temperature or sea surface temperature.3

However, climate is a very complex system, involving many other important4

variables. Recently, several studies have focused in a different aspect of climate:5

atmospheric moisture and related quantities like, for example, precipitation.6
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Perhaps the most studied example is the Asian monsoon, where correlations7

between solar activity and precipitation have been found in several time8

scales. For example, Neff et al. (2001) found strong coherence between solar9

variability and the monsoon in Oman between 9 and 6 kyr ago. Agnihotri et al.10

(2002) found that Indian monsoon intensity followed the solar irradiance vari-11

ability on centennial time scales during the last millennium. Fleitmann et al.12

(2003) studied Holocene forcing of the Indian monsoon, and found that inter-13

vals of weak (strong) solar activity correlates with periods of low (high) mon-14

soon precipitation. On shorter time scales, Mehta and Lau (1997), found15

that, at decadal-multidecadal time scales, the correlation between the El Niño16

3 index and the monsoon rainfall is stronger when solar irradiance is above17

normal and viceversa. Correlations between solar activity and Indian mon-18

soon in decadal time scales were also found by Bhattacharyya and Narasimha19

(2005) and Kodera (2004), among others.20

Wang et al. (2005) studied the monsoon in southern China over the past 900021

years, and found that higher solar irradiance corresponds to stronger mon-22

soon. They proposed that the monsoon responds almost immediately to solar23

changes by rapid atmospheric responses to solar forcing.24

All these studies reported a positive correlation, where periods of higher solar25

activity correspond to periods of larger precipitation. In contrast, Hong et al.26

(2001) studied a 6000-year record of drought and precipitation in northeast-27

ern China, and found that most of the dry periods agree well with stronger28

solar activity and viceversa. In the American continent, droughts in the Yu-29

catan Peninsula have been associated with periods of high solar activity and30

have even been proposed to explain the Mayan decline (Hodell et al., 2001).31

In the same sense, studies based on the water level of Lakes Naivasha (Verschuren et al.,32

2000) and Victoria (Stager et al., 2005) in East Africa, report severe droughts33

during phases of high solar activity and increased precipitation during peri-34

ods of low solar irradiation. To explain these differences it has been proposed35

that increased solar irradiation causes more evaporation in equatorial regions,36

enhancing the net transport of moisture flux to the Indian sub-continent via37

monsoon winds (Agnihotri et al., 2002).38

However, these relationships seem to have reversed sign around 200 years ago,39

as severe droughts developed over much of tropical Africa during the Dal-40

ton sunspot minimum, ca. AD 1800-1820 (Stager et al., 2005). Furthermore,41

Stager et al. (2007) studied recent water levels in Lake Victoria, and found42

that peaks in the ∼11-year sunspot cycle were accompanied by water level43

maxima throughout the 20th century, due to the occurrence of positive rain-44

fall anomalies ∼1 year before solar maxima. Similar patterns also occurred in45

at least five other East African lakes, indicating that these sunspot-rainfall46

relationships were broadly regional in scale.47
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A different approach was taken by Mauas and Flamenco (2005) who proposed48

to study the streamflow of a large river, the Paraná in southern South Amer-49

ica, as an indicator of precipitation. In fact, flows of continental-scale rivers50

are excellent climatic indicators since they integrate precipitation, infiltra-51

tions and evapotranspiration over large areas and smooth out local variations.52

Signals of solar activity have recently been found with spectral analysis tech-53

niques in the river Nile by Ruzmaikin et al. (2006), who found a low-frequency54

88-year variation present in solar variability and in the Nile records. Similarly,55

Zanchettin et al. (2008) found that the discharge of the Po river appear to56

be correlated with variations in solar activity, on decadal time scales.57

In Mauas et al. (2008) (hereinafter Paper I) we presented the results of our58

study of the Paraná. We found that the streamflow variability of the Paraná59

river has three temporal components: on the secular scale, it is probably part60

of the global climatic change, which at least in this region of the world is61

related with more humid conditions; on the multidecadal time scale, we found62

a strong correlation with solar activity, as expressed by the Sunspot Number,63

and therefore probably with solar irradiance, with higher activity coincident64

with larger discharges; on the yearly time-scale, the dominant correlation is65

with El Niño.66

In the present paper we follow up on the study of the influence of solar activity67

on the flow of South American rivers. In Section 2 we expand in time the study68

of the multi-decadal component of the Paraná’s streamflow, to include the69

most recent years, which have shown particularly low levels of solar activity.70

In Section 3 we study other South American rivers, to see whether the influence71

extends to other areas of the continent. Finally, in Section 4 we discuss the72

implications of our findings.73

2 The multidecadal component of the Paraná’s streamflow74

The Paraná is the fourth river of the world according to streamflow (20 60075

m3/s), and the fifth according to drainage area (3 100 000 km2), which is the76

second largest in South America. Its origin is in the southernmost part of the77

Amazon forest, from where it flows south collecting water from territories in78

Brazil, Bolivia, Paraguay and Argentina. Its outlet is in the Plata River, a few79

kilometers north of the City of Buenos Aires. It flows through heavily popu-80

lated areas and it is navigated by overseas trade ships, unlike other rivers of81

similar size. For these reasons, its streamflow has been measured continuously82

during the last century.83

As in Paper I, we analyze the streamflow data measured daily since 1904, at84

a gauging station located in the city of Corrientes, 900 km north of the outlet85
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of the Paraná. Since the Paraná’s hydrological year goes from September to86

August, with maximum streamflow in the Southern Hemisphere’s summer87

months of January, February and March, our yearly series integrates the flow88

from September to August of the next year.89

In Paper I we found that in intermediate scales of decades, there is a strong90

correlation between the Paraná’s streamflow and solar activity, as expressed91

by the Sunspot Number (SN )
1 , with larger solar activity corresponding to92

larger streamflow. We found a similarly strong correlation with the irradiance93

reconstruction by Wang et al. (2005).94

We further explore this correlation in Fig. 1, which is an update of Fig. 2 of95

Paper I, including 4 more years of data. To retain only the intermediate scale,96

we first computed the secular trends with a low-pass Fourier filter with a 5097

years cut-off, as shown in Fig. 1 of Paper I, which was substracted from the98

data. Then, we performed an 11-year-running mean to smooth out the solar99

cycle (for this reason, only data for the period 1909-2003 are shown). In this100

way, both high and low frequencies have been filtered out of the data in Fig.101

1, which only retain the variations in timescales between 11 and 50 years.102

When plotting together different quantities, the offset and the relative scales103

are free parameters which are usually arbitrarily introduced. To avoid these104

two artificial parameters, as a final step we have standardized the quantities105

by subtracting the mean and dividing by the standard deviation of each series106

shown, for the whole period 1909-2003. More details can be found in Paper I.107

The correlation between the Paraná’s streamflow and the Sunspot Number108

in Fig. 1 is quite remarkable. In fact, the correlation coefficient between both109

series is R=0.78, significant to a 99% level.110

We point out that this correlation is found in the intermediate time scale. On111

longer timescales, both the Paraná’s discharge and solar activity are larger in112

the last decades than in the first ones of the 20th century, and these increases113

are not correlated (for a discussion, see Paper I). On the yearly timescale,114

the dominant factor influencing streamflow’s variations is El Ninño (again,115

see Paper I for details). The results shown in Fig. 1 show that decades of116

larger discharge correspond to decades of higher activity, with these variations117

overimposed on the corresponding secular trends.118

It can be seen that the correlation is still found in the most recent years.119

In particular, in the period 1995-2003 both the mean Sunspot Number and120

the Paraná’s streamflow have decreased by similar amounts. In fact, Solar121

Cycle 23 was the weakest since the 1970s, and the onset of Solar Cycle 24122

was delayed by a minimum with the largest number of spotless days since the123

1 Available at ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/SUNSPOT NUMBERS.
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Fig. 1. The detrended time series for the Paraná’s streamflow (full line) and the
Sunspot Number (dashed line). The detrended series were obtained by subtracting
from each data series the corresponding secular trend and were smoothed by an
11-yr-running mean to eliminate the solar cycle. Both series were standardized by
subtracting the mean and dividing by the standard deviation, to avoid introducing
arbitrary free parameters. The Pearson’s correlation coefficient is R=0.78.

1910s. Morover, SN for the years 2008 and 2009 (2.9 and 3.1, respectively),124

have been the lowest since 1913. Similarly, the mean levels of the Paraná were125

also the lowest since the 1970s.126

We have also tested the correlations between the Paraná’s discharge and the127

neutron count at Climax, Colorado 2 , which is a direct measure of the galactic128

cosmic rays (GCR) flux. Of course, since neutron count is correlated with129

sunspot numbers, we found a correlation with Paraná’s streamflow. However,130

the correlation with SN is larger, pointing to a more direct correlation with131

2 Available at http://www.env.sci.ibaraki.ac.jp/ftp/pub/WDCCR/STATIONS/climax.

5



solar irradiance than with GCR.132

The relationship between smaller solar activity and low Paraná’s discharge can133

also be found in historical records. For example, low discharges were reported134

during the period known as the Little Ice Age (LIA). In particular, a traveler135

of that period recalls in his diary that in the year 1752 the streamflow was136

so small that the river could not even be navigated by the ships of that time,137

which were less than 5 ft draft, to be compared with ships up to 18 ft draft138

that can navigate it at present as far north as Asunción in Paraguay (Iriondo,139

1999). The fact that the LIA coincided with reduced precipitation in this140

region has been found in different climatic records (e.g. Piovano et al. 2009141

and references therein). It is well known that the LIA coincided with, and142

perhaps was caused by, low solar activity (Eddy, 1976).143

3 The Colorado river basin144

Here we study the streamflow of the Colorado river, and two of its tributaries,145

the San Juan and the Atuel rivers (see Fig. 2). We also analyze snow levels,146

measured near the sources of the Colorado.147

Fig. 2. Colorado hydrologic system. The rivers under study are marked in the figure:
a. Colorado, b. San Juan, c. Atuel and d. the lower part of the Paraná river. The
stream flow (�) and snow (•) measuring stations are also indicated.
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River 〈S〉 A T Gauging Station

(m3/s) (km2)

Colorado 150 15 300 1940-2006 Buta Ranquil 37◦ 06’ S 69◦ 44’ W

Atuel 32 3800 1916-1999 La Angostura 35◦ 02’ S 68◦ 52’ W

San Juan 56 25700 1909-2005 KM 47,3 31◦ 32’ S 68◦ 53’ W

Table 1
〈S〉: Mean streamflow. A:drainage basin area. T : time interval f stream flow records.

The Colorado river marks the north boundary of the Argentine Patagonia,148

separating it from the Pampas, to the northeast, and the Andean region of149

Cuyo, to the Northwest. Its origin is on the eastern slopes of the Andes Moun-150

tains, from where it flows southeast until it discharges in the Atlantic Ocean.151

The Atuel, which originates in the glacial Atuel Lake, at 3250 m above sea152

level in the Andes range, and the 500 km long San Juan river, join the Col-153

orado downstream of it’s gauging station. Therefore, the data given by the154

three series are not directly related.155

In Table 1 we list the mean stream flow and drainage basin area of the Col-156

orado, Atuel and San Juan rivers. We also include the time interval of the157

stream flow records plotted in Fig. 4 and the geographical coordinates of the158

gauging stations.159

Unlike the Paraná, whose streamflow is directly related to precipitation,160

the regime of all these rivers is dominated by snow melting, and their stream-161

flows reflect precipitation accumulated during the winter, and melted during162

spring and summer. For this reason, the streamflows are largest during sum-163

mer, and the hydrological year for these rivers goes from July to June next164

year. This can be seen In Fig. 3, where we show the mean monthly flow of165

the Colorado. In the figure we separately plot the flow for years when the166

multidecadal component of the sunspot number shown in Fig. 1 is high (low),167

i.e. larger (smaller) than 0.5 σ above (below) the mean value. It can be seen168

that during the decades with larger activity, the streamflow is larger from169

September to December, when most of the melting takes place, and remains170

almost constant during the rest of the year.171

To directly study the snow precipitation, we complete our data with mea-172

surements of the height of snow accumulated at Valle Hermoso (35◦ 15’ S; 70◦173

20’ W), in the Andes at 2250 m above Sea level, close to the origin of the174

Colorado (see Fig. 2), which were measured in situ at the end of the winter175

since 1952. In fact, the correlation between the streamflow of the Colorado and176

the snow height is very good, with a correlation coefficient R=0.87, significant177

to a 99% level. Correlation coefficients between the snow data and the Atuel178

and San Juan streamflows are R=0.76 and R=0.64, respectively. Since Valle179
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Fig. 3. Monthly Colorado’s mean streamflow. The solid (dashed) curve was obtained
considering only the years when the multidecadal component of SN shown in Fig.
1 is high (low), i.e. larger (smaller) than 0.5 σ above (below) the mean value.

Hermoso is placed closer to the origin of the Colorado, and closer to the Atuel180

than to the San Juan, this progressive reduction of the correlation is to be181

expected.182

In Fig. 4 we plot the yearly time series of the streamflow of the Colorado, San183

Juan and Atuel rivers, the snow height and the Sunspot number. We also show184

the variation in the longest scales, obtained with a low-pass Fourier filter, as185

we did for the Paraná. However, since the length of the time series is not the186

same for every set of observations, we could not apply a uniform filter for all of187

them. In all cases, the cut-off was taken as half the length of the observations188

(33 years for the Colorado, 40 years for the Atuel, 50 years for the San Juan189

and the Sunspot Number and 28 years for the snow)190

In Fig. 5 we compare the multidecadal component of the streamflows with the191

corresponding series for the sunspot number. In each case, we smoothed out192

the solar cycle with an 11-year running mean, and we detrended the series by193

subtracting the long term component shown in Fig. 4. Finally, we standard-194

ized the data by subtracting the mean and dividing by the standard deviation195

of each series shown for the period 1971-2000, suggested by the World Mete-196

orological Organization as standard reference. In the panel corresponding to197

the Colorado, we also include the snow height.198

It can be seen that in all cases the agreement is remarkable. The correlation199

coefficients are 0.59, 0.47, 0.67 and 0.69 for the Colorado, the snow level,200
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Fig. 4. Time series of the Colorado, San Juan and Atuel’s streamflow, the snow
height measured at Valle Hermoso and the Sunspot Number. The long-term trend
of each series is marked with a heavy line.

the San Juan and the Atuel, respectively, all significant to the 96-97% level.201

Therefore, also in these cases we found a relation between solar activity, on202

one hand, and the streamflow of these rivers and snow level, on the other, as203

we found for the Paraná.204

Probably, the most important correlation is the one with snow level,205

and the correlations with the rivers’ streamflow are indirect conse-206

quences of the variations in precipitations. We should point out that207

climate in this area is correlated with the conditions over the equatorial Pa-208

cific, as measured by El Niño. This correlation was studied for the Diamante209

River, also a tributary of the Colorado, by Berri and Flamenco (1999).210

In particular, the peaks in the snow level and the streamflows (see Fig. 4) in211
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the year 1982/3 coincide with a very strong El Niño event, which caused a huge212

flood in the Paraná’s basin, as we discussed in Paper I. Correlation coefficients213

between our data and el Niño 1+2 index in November (at the beginning of the214

austral Summer), are R=0.51, R=0.60, R=0.60, and R=0.61, for snow level215

and the Colorado, Atuel and San Juan rivers, respectively.216

Although all these rivers have maximum streamflow during Summer, there is a217

big difference, however, between the regimes of the Paraná and the remaining218

rivers: for these ones, the important factor is the intensity of the precipitation219

occurring in the winter months, from June to August. For the Paraná, what is220

most important is the level of the precipitation during the summer months.221

It is also worth noticing the sense of the relationship: here again, stronger222

activity coincides with larger precipitation.223

4 Discussion224

In this paper we analyzed the influence of solar activity in the streamflow225

of South American rivers of different regimes. First, we extended in time the226

study of the correlation between Sunspot Number and the Paraná’s streamflow227

we reported in Paper I. On one hand, we found that the unusual minimum228

of solar activity in recent years have a correlation on very low levels in the229

Paraná’s flow. On the other, we reported historical evidence of low water230

levels during the Little Ice Age. We also found that the correlation is stronger231

with sunspot number than with neutron count, which confirms that what is232

affecting climate is most probably solar irradiance, and not GCRs.233

The fact that the river’s behaviour follows SN through one more minimum234

strongly enhances the significance of the correlation and its predictive value.235

In particular, the low levels of activity expected for Solar Cycle 24 anticipate236

that the dry period in the Paraná will continue well into the next decade.237

To study whether the solar influence extends to other areas of the continent,238

we analyzed the streamflow of three South American rivers: the Colorado239

and two of its tributaries, the San Juan and Atuel rivers. We also used snow240

level from a station at the origin of the Colorado. We obtained that, after241

eliminating the secular trends and smoothing out the solar cycle, there is a242

strong correlation between the residuals of both the Sunspot Number and the243

streamflows. In all cases, the correlation we found on multi-decadal time scales244

is positive, i.e., higher solar activity corresponds to larger snow accumulation245

and, therefore, to larger discharges of all these rivers, as we obtained for the246

Paraná river.247

Therefore, both results put together imply that higher solar activity corre-248
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Fig. 5. The detrended streamflows (full
lines) compared with Sunspot Number
(dashed lines). In panel (a) the snow level
is also shown (dotted line). The data were
smoothed with an 11-year running mean,
detrended by substracting the long term
component. All series were standardized
by subtracting the mean and dividing
by the standard deviation of each series
shown for the period 1971-2000.

sponds to larger precipitation, not only in the large basin of the Paraná, but249

also in the Andean region north of the limit with Patagonia. Furthermore,250

since streamflow variability of rivers on central Chile are controlled by the251

same mechanisms that regulate the rivers studied in this paper, one might252

expect the same correlation to be found west of the Andes.253

Solar activity can affect precipitation through the position of the Inter Trop-254

ical Convergence Zone (ITCZ), which has been shown to correlate with varia-255

tions in solar insolation (Poore et al., 2004; Haug et al., 2001). In fact, it has256

been proposed that a displacement southwards of the ITCZ would increase257

precipitation in southern tropical South America (Newton et al., 2006). We258
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point out that increased precipitation occur both in the Southern Hemi-259

sphere’s summer when the ITCZ is over the equator, close to the origin of the260

Paraná, and in wintertime, when the ITCZ displaces north, and precipita-261

tion increase further South.262
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